[livres divers classés par sujet] [Informatique] [Algorithmique] [Programmation] [Mathématiques] [Hardware] [Robotique] [Langage] [Intelligence artificielle] [Réseaux]
[Bases de données] [Télécommunications] [Chimie] [Médecine] [Astronomie] [Astrophysique] [Films scientifiques] [Histoire] [Géographie] [Littérature]

Extended TA Algorithm for adapting a Situation Ontology

contributor Institut für Parallele und Verteilte Systeme, Verteilte Systeme
Institut für Parallele und Verteilte Systeme, Bildverstehen
creator Zweigle, Oliver
Häussermann, Kai
Käppeler, Uwe-Philipp
Levi, Paul
date 2009-08-18
description In this work we introduce an improved version of a learning algorithm for the automatic adaption of a situation ontology (TAA) which extends the basic principle of the learning algorithm. The approach bases on the assumption of uncertain data and includes elements from the domain of Bayesian Networks and Machine Learning. It is embedded into the cluster of excellence Nexus at the University of Stuttgart which has the aim to build a distributed context aware system for sharing context data.
identifier  http://www.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2009-77&engl=1
ISBN: ISBN: 978-3-642-03985-0
language eng
publisher University of Stuttgart : Collaborative Research Center SFB 627 (Nexus: World Models for Mobile Context-Based Systems)
Incheon, Korea: Springer Verlag
relation Communications in Computer and Information Science; 44
Federation of International Robot-soccer Association
source In: Proceedings of the FIRA RoboWorld Congress 2009, Progress in Robotics, pp. 364-371
subject Artificial Intelligence Learning (CR I.2.6)
situation recognition
situation
bayes
title Extended TA Algorithm for adapting a Situation Ontology
type Text
Article in Proceedings